
李傳友教授
學(xué)歷:博士
職稱:教授
聯(lián)系電話:0538-8241758;郵件:chuanyouli@sdau.edu.cn
個(gè)人簡(jiǎn)介
李傳友,博士、教授,博士生導(dǎo)師。1999年獲中國(guó)科學(xué)院遺傳研究所博士學(xué)位。1999-2003年在Michigan State University DOE-Plant Research Laboratory從事博士后研究。2003年入選中國(guó)科學(xué)院“百人計(jì)劃”,2004年獲 “國(guó)家杰出青年科學(xué)基金”資助。2015年入選泰山學(xué)者優(yōu)勢(shì)特色學(xué)科團(tuán)隊(duì)領(lǐng)軍人才。2016年入選中組部“萬人計(jì)劃”科技創(chuàng)新領(lǐng)軍人才。擔(dān)任國(guó)家重大科學(xué)研究計(jì)劃項(xiàng)目首席科學(xué)家,主要學(xué)術(shù)兼職包括《Molecular Plant》、《Horticulture Research》、《Plant Molecular Biology》等國(guó)際著名刊物編委。作為執(zhí)行委員會(huì)委員和中方聯(lián)絡(luò)人組織實(shí)施了國(guó)際茄科基因組計(jì)劃,完成了栽培番茄與其起源種醋栗番茄基因組的精細(xì)序列分析。組織召開了第286次香山科學(xué)會(huì)議“植物激素與綠色革命”和第479次香山科學(xué)會(huì)議“植物發(fā)育與生殖:前沿科學(xué)問題與發(fā)展戰(zhàn)略”。作為學(xué)術(shù)秘書申請(qǐng)并組織實(shí)施了國(guó)家自然科學(xué)基金委首個(gè)重大研究計(jì)劃項(xiàng)目“植物激素作用的分子機(jī)理”(2008–2016年)并在結(jié)題驗(yàn)收中獲得優(yōu)秀。
李傳友團(tuán)隊(duì)長(zhǎng)期研究植物系統(tǒng)性防御與可塑性發(fā)育的機(jī)理。創(chuàng)造性地把植物受傷反應(yīng)分為防御與再生兩個(gè)密不可分的生理過程,破譯了逆境條件下植物通過改變干細(xì)胞活性協(xié)同調(diào)控適應(yīng)性生長(zhǎng)和抗性的分子機(jī)制,發(fā)現(xiàn)了調(diào)控植物組織修復(fù)和器官再生的原初受傷信號(hào)--再生因子REF1并揭示了其在作物遺傳改良中的巨大應(yīng)用價(jià)值。精細(xì)解讀了模式植物番茄的基因組,致力于健康美味番茄精準(zhǔn)設(shè)計(jì)育種。在Cell、Nature、Nature Plants、PNAS、Molecular Plant、Plant Cell等國(guó)際主流學(xué)術(shù)刊物發(fā)表論文130余篇,引用12000余次。在國(guó)際權(quán)威出版社ELSEVIER出版英文專著《Hormone Metabolism and Signaling in Plants》。H-index為57。入選Clarivate Analytics(科睿唯安)全球前1%高被引學(xué)者名單,連續(xù)四年入選ELSEVIER(愛思唯爾)中國(guó)高被引學(xué)者名單。申請(qǐng)PCT 專利1項(xiàng),獲得授權(quán)專利20余項(xiàng)、植物新品種權(quán)2項(xiàng),育成農(nóng)業(yè)農(nóng)村部登記番茄品種7個(gè)。
研究方向
1. 茉莉酸作用機(jī)理
茉莉酸既調(diào)控植物免疫,又在植物可塑性發(fā)育中發(fā)揮重要作用。茉莉酸信號(hào)通路的實(shí)質(zhì)是核心轉(zhuǎn)錄因子MYC2介導(dǎo)的轉(zhuǎn)錄重編程。一方面,我們研究中介體亞基MED25與MYC2形成的功能復(fù)合體MMC (MYC2-MED25 Functional Transcription Complex)在茉莉酸信號(hào)的激活、級(jí)聯(lián)放大、終止以及精細(xì)調(diào)控中的作用機(jī)制;另一方面,我們研究免疫激素茉莉酸與生長(zhǎng)激素互作通過改變干細(xì)胞活性調(diào)控植物可塑性發(fā)育和器官再生的機(jī)理。

2. 植物防御與再生機(jī)理
與動(dòng)物相比,固著生長(zhǎng)的植物更易遭受機(jī)械損傷。在長(zhǎng)期的進(jìn)化過程中,植物形成了動(dòng)物不可比擬的應(yīng)對(duì)損傷的能力。面對(duì)損傷,植物能快速激活防御反應(yīng),并輕松自如地進(jìn)行組織修復(fù)和器官再生。在番茄中,人們發(fā)現(xiàn)了植物對(duì)機(jī)械損傷的系統(tǒng)性防御現(xiàn)象,并證實(shí)小肽激素系統(tǒng)素(systemin)和經(jīng)典激素茉莉酸通過共同的信號(hào)通路調(diào)控植物的系統(tǒng)性防御反應(yīng)。相比而言,人們對(duì)損傷引發(fā)植物再生的原初信號(hào)及其轉(zhuǎn)導(dǎo)機(jī)制知之甚少。我們以番茄為模式,建立了用正向遺傳學(xué)手段解析植物受傷反應(yīng)的研究體系。一方面,我們進(jìn)行了大規(guī)模的遺傳篩選獲得了一系列系統(tǒng)素信號(hào)通路的抑制子(suppressor of prosystemin-mediated responses, spr),通過對(duì)這些防御缺陷突變體的研究分離關(guān)鍵組分,在此基礎(chǔ)上解析植物的系統(tǒng)性防御反應(yīng)的調(diào)控機(jī)理。另一方面,我們創(chuàng)造性地提出在植物受傷反應(yīng)中防御功能與再生功能是密不可分的這一全新理念,據(jù)此從分析防御缺陷突變體的再生表型入手鑒定防御和再生同時(shí)發(fā)生缺陷的突變體,找到了誘發(fā)植物再生的原初受傷信號(hào)分子—再生因子REF1,在此基礎(chǔ)上系統(tǒng)解析植物組織修復(fù)和器官再生的信號(hào)網(wǎng)絡(luò)。

3. 番茄重要農(nóng)藝性狀形成機(jī)理解析與種質(zhì)創(chuàng)新
開展番茄功能基因組學(xué)研究,與國(guó)際同行一道完成了栽培番茄及其起源種醋栗番茄基因組的精細(xì)序列分析。聚焦番茄對(duì)重大病害(土傳病害頸腐根腐病、青枯病,死體營(yíng)養(yǎng)型病害灰霉病、灰葉斑病,褐色皺果病毒病等)的抗性和品質(zhì)(風(fēng)味品質(zhì)、營(yíng)養(yǎng)品質(zhì)和健康品質(zhì))等重要農(nóng)藝性狀,從豐富的種質(zhì)資源入手,鑒定控制番茄抗病性和優(yōu)質(zhì)的關(guān)鍵基因,闡明番茄抗病性和品質(zhì)性狀形成的分子機(jī)理。鑒定關(guān)鍵抗性基因和優(yōu)質(zhì)基因的優(yōu)異單倍型,解析其馴化和演化規(guī)律,創(chuàng)制對(duì)番茄抗性和果實(shí)品質(zhì)提升有顯著效應(yīng)的新種質(zhì)。

4. 健康美味番茄生物育種
針對(duì)目前對(duì)抗性與品質(zhì)互作機(jī)制認(rèn)識(shí)不足的現(xiàn)狀,聚焦影響番茄品質(zhì)的重要病害,建立抗性與品質(zhì)互作的研究模型,解析番茄抗性與品質(zhì)基因互作的遺傳與代謝基礎(chǔ),發(fā)掘同時(shí)控制抗性和品質(zhì)性狀形成的節(jié)點(diǎn)基因,創(chuàng)制對(duì)綜合性狀提升有顯著效應(yīng)的番茄新種質(zhì)。在此基礎(chǔ)上,采取基因組設(shè)計(jì)和生物育種新手段,培育營(yíng)養(yǎng)健康、綠色高效的美味番茄新品種。

媒體報(bào)道
【中央電視臺(tái)】CCTV2《中國(guó)經(jīng)濟(jì)大講堂》——“餐桌上的大科技:小番茄如何變身大‘柿’業(yè)?”
https://tv.cctv.com/2022/07/10/VIDEu0gtXeCYxpP1DArP0RcS220710.shtml?spm=C22284.P688WJO9UZkZ.EOo9iyvyHTQR.1
【中央電視臺(tái)】CCTV10《透視新科技》——番茄變身記
https://tv.cctv.com/2022/08/22/VIDEWErqMWZczJuOuUPkleYh220822.shtml
【中央電視臺(tái)】CCTV1《新聞聯(lián)播》——我國(guó)主導(dǎo)完成番茄基因組測(cè)序
https://news.cntv.cn/program/xwlb/20120601/116348.shtml
【中央電視臺(tái)】CCTV13《新聞直播間》——關(guān)注番茄基因組測(cè)序 我國(guó)主導(dǎo)完成番茄基因組測(cè)序
https://news.cctv.com/2012/06/02/VIDEbXhRwKpfzBxDkEKh9abf120602.shtml
【中央電視臺(tái)】CCTV13《新聞直播間》——關(guān)注番茄基因組測(cè)序 基因“爭(zhēng)奪”:沒有硝煙的戰(zhàn)爭(zhēng)
http://news.cntv.cn/program/zdxwzx/20120602/100642.shtml
【山東電視臺(tái)】山東衛(wèi)視《山東新聞聯(lián)播》——破解世紀(jì)難題 山東農(nóng)業(yè)大學(xué)首次發(fā)現(xiàn)植物再生因子
https://sdxw.iqilu.com/share/dHYtMjEtNTUzMTg1Mw.html#/
【山東電視臺(tái)】山東新聞?lì)l道《閃電會(huì)客廳》——山東科研團(tuán)隊(duì)首次發(fā)現(xiàn)植物再生因子
https://sdxw.iqilu.com/share/dHYtMjEtNTUzNjk5Nw.html#/
【山東電視臺(tái)】山東農(nóng)科頻道《山農(nóng)大家說》——李傳友教授團(tuán)隊(duì):破解世紀(jì)難題 揭開再生奧秘
https://sdxw.iqilu.com/w/article/YS0yMS0xNTY4MTUyNg.html
【山東電視臺(tái)】山東衛(wèi)視《山東新聞聯(lián)播》——山東農(nóng)業(yè)大學(xué)李傳友團(tuán)隊(duì)揭示番茄果形建成機(jī)制并研發(fā)出機(jī)采鮮食番茄
https://news.cctv.com/2023/09/20/VIDEosGWZNssakoTHBYmsF6k230920.shtml
【CC講壇】李傳友:揭秘番茄的智慧
https://open.163.com/newview/movie/free?pid=MD7EKI1NF&mid=MDP9CV2T7
【人民日?qǐng)?bào)】我國(guó)科學(xué)家揭示植物再生新機(jī)制
http://paper.people.com.cn/rmrb/html/2024-05/28/nw.D110000renmrb_20240528_2-12.htm
【科技日?qǐng)?bào)】植物再生的“指揮官”找到了
http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2024-06/12/content_572896.htm
【光明日?qǐng)?bào)】山東農(nóng)業(yè)大學(xué)團(tuán)隊(duì)揭示植物再生機(jī)制
https://app.guangmingdaily.cn/as/opened/n/299cdb2e377d4b23b13bc3062bc75e5c
【科技日?qǐng)?bào)】讓鮮食番茄既耐擠壓又香甜
http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2023-10/10/content_560646.htm?div=-1
【光明日?qǐng)?bào)】山東農(nóng)業(yè)大學(xué)研發(fā)出適合機(jī)采的鮮食番茄
https://app.gmdaily.cn/as/opened/n/d38e190f36b64c89b6dec7e37168537a
【民生周刊】小番茄里有“大智慧”
https://www.msweekly.com/mobile/show.html?id=139081
【農(nóng)民日?qǐng)?bào)】丟掉的番茄味,是怎樣找回來的?
https://baijiahao.baidu.com/s?id=1739376282136753673&wfr=spider&for=pc
代表性論著(*通訊作者)
Yang W, Zhai H, Wu F, Deng L*, Chao Y, Meng X, Chen Q, Liu C, Bie X, Sun C, Yu Y, Zhang X, Zhang X, Chang Z, Xue M, Zhao Y, Meng X, Li B, Zhang X, Zhang D, Zhao X, Gao C, Li J, and Li C*. (2024). Peptide REF1 is a local wound signal promoting plant regeneration. Cell 187: 3024–3038.
新聞公眾號(hào):專家點(diǎn)評(píng) Cell | 破解世紀(jì)難題——李傳友團(tuán)隊(duì)首次發(fā)現(xiàn)再生因子調(diào)控植物組織修復(fù)和器官再生,https://mp.weixin.qq.com/s/yc8b5GRtIb-46Xg-FuASDQ
Han H, Li X, Li T, Chen Q, Zhao J, Zhai H, Deng L, Meng X*, and Li C*. (2024). Chromosome-level genome assembly of Solanum pimpinellifolium. Sci. Data 11: 577.
新聞公眾號(hào):山東農(nóng)業(yè)大學(xué)李傳友團(tuán)隊(duì)解析醋栗番茄基因組,https://mp.weixin.qq.com/s/nZARUtPT1jTVnPPgpSrQdw
Yang T, Deng L*, Wang Q, Sun C, Ali M, Wu F, Zhai H, Xu Q, Xin P, Cheng S, Chu J, Huang T, Li C-B, and Li C*. (2024). Tomato CYP94C1 inactivates bioactive JA-Ile to attenuate jasmonate-mediated defense during fruit ripening. Mol. Plant 17: 509–512.
新聞公眾號(hào):中科院遺傳發(fā)育所/山東農(nóng)大李傳友團(tuán)隊(duì)揭示果實(shí)成熟更易腐爛的分子機(jī)理并提出打破番茄優(yōu)質(zhì)與高抗負(fù)相關(guān)新策略,https://mp.weixin.qq.com/s/1w7aZWmPSJfLD8DJfEfeFg
Liu J, Zhang C, Sun H, Zang Y, Meng X, Zhai H, Chen Q*, and Li C*.(2024) A natural variation in SlSCaBP8 promoter contributes to the loss of saline-alkaline tolerance during tomato improvement. Hortic. Res. 10: uhae055.
新聞公眾號(hào):山東農(nóng)業(yè)大學(xué)李傳友團(tuán)隊(duì)揭示SlScaBP8的自然變異調(diào)控番茄鹽堿脅迫抗性的分子機(jī)制,https://mp.weixin.qq.com/s/ORe23vopWDYWPA0o4_9Vwg
Wang Y, Sun C, Ye Z, Li C, Huang S, and Lin T*. (2024). The genomic route to tomato breeding: Past, present, and future. Plant Physiol. DOI:10.1093/plphys/kiae248
Zhu Q, Deng L, Chen J, Rodriguez GR, Sun C, Chang Z, Yang T, Zhai H, Jiang H, Topcu Y, Francis D, Hutton S, Sun L, Li C-B, van der Knaap E, and Li C* (2023). Redesigning the tomato fruit shape for mechanized production. Nat. Plants 9: 1659–1674.
Highlighted with a News article in Science, https://doi.org/10.1126/science.adk9188
獲F1000推薦,https://nature.altmetric.com/details/154356080/research-highlights
Deng L*, Yang T, Li Q, Chang Z, Sun C, Jiang H, Meng X, Huang T, Li C-B, Zhong S, and Li C*. (2023). Tomato MED25 regulates fruit ripening by interacting with EIN3-like transcription factors. Plant Cell 35: 1038–1057.
Highlighted with an In Brief article in Plant Cell, https://doi.org/10.1093/plcell/koad015
新聞公眾號(hào):中科院遺傳發(fā)育所李傳友研究組揭示番茄果實(shí)成熟調(diào)控新機(jī)理,https://mp.weixin.qq.com/s/Z0fqI2o3daODidIAbpL60g
Yang T, Ali M, Lin L, Li P, He H, Zhu Q, Sun C, Wu N, Zhang X., Huang T, Li C-B, Li C*, and Deng L*. (2023). Recoloring tomato fruit by CRISPR/Cas9-mediated multiplex gene editing. Hortic. Res. 10: uhac214. (Cover story)
新聞公眾號(hào):中科院遺傳發(fā)育所李傳友課題組通過多重基因編輯實(shí)現(xiàn)番茄多種果色的快速同步定制,https://mp.weixin.qq.com/s/QKNDQI3WA5VAaPPg1QZd2A
Zhou M, Deng L, Yuan G, Zhao W, Ma M, Sun C, Du M*, Li C*, and Li C-B*. (2023). Rapid generation of a tomato male sterility system and its feasible application in hybrid seed production. Theor. Appl. Genet. 136: 197.
Zhou M, Deng L, Yuan G, Zhao W, Ma M, Sun C, Du M, Li C, and Li C-B*. (2023). A CRISPR-Cas9-derived male sterility system for tomato breeding. Agronomy 13: 1785.
Zhao Q, Zhao P, Wu Y, Zhong C, Liao H, Li C, Fu X, Fang P, Xu P*, and Xiang C*. (2023). SUE4, a novel PIN1-interacting membrane protein, regulates acropetal auxin transport in response to sulfur deficiency. New Phytol. 237: 78–87.
An C, Deng L, Zhai H, You Y, Wu F, Zhai Q, Goossens A, and Li C*. (2022). Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. Mol. Plant 15: 1329–1346.
Highlighted with a Spotlights article in Molecular Plant, https://doi.org/10.1016/j.molp.2022.07.015
新聞公眾號(hào):李傳友研究組發(fā)現(xiàn)轉(zhuǎn)錄共抑制子TOPLESS通過可逆乙酰化修飾調(diào)控茉莉酸信號(hào)通路,https://mp.weixin.qq.com/s/HuoKcu40AaFnjupqcsQmyA
Du M, Daher F, Liu Y, Steward A, Tillmann M, Zhang X, Wong J, Ren H, Cohen J, Li C*, and Gray W*. (2022). Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Sci. Adv. 8: eabj1570.
新聞公眾號(hào):Science Advances | 打破傳統(tǒng)認(rèn)知,李傳友研究組合作解析植物頂端彎鉤的形成機(jī)制,https://mp.weixin.qq.com/s/mtrVwMLS2fkyQxG15RSbrw
Lin L, Du M, Li S, Sun C, Wu F, Deng L, Chen Q*, and Li C*. (2022). Mediator complex subunit MED25 physically interacts with DST to regulate spikelet number in rice. J. Integr. Plant Biol. 64: 871–883
Zhou M, Deng L, Guo S, Yuan G, Li C*, and Li C-B*. (2022). Alternative transcription and feedback regulation suggest that SlIDI1 is involved in tomato carotenoid synthesis in a complex way. Hortic. Res. 9: uhab045. (Cover story)
Tao H, Miao H, Chen L, Wang M, Xia C, Zeng W, Sun B, Zhang F, Zhang S, Li C*, and Wang Q*. (2022). WRKY33-mediated indolic glucosinolate metabolic pathway confers resistance against Alternaria brassicicola in Arabidopsis and Brassica crops. J. Integr. Plant Biol. 64: 1007–1019.
Lian J, Han H, Chen X, Chen Q, Zhao J*, and Li C*. (2022). Stemphylium lycopersici Nep1-like protein (NLP) is a key virulence factor in tomato gray leaf spot disease. J. Fungi 8: 518.
Sun C, Li D, Gao Z, Gao L, Shang L, Wang M, Qiao J, Ding S, Li C, Geisler M, Jiang D, Qi Y*, and Qian Q*. (2022). OsRLR4 binds to the OsAUX1 promoter to negatively regulate primary root development in rice. J. Integr. Plant Biol. 64: 118-134.
Tu T, Zheng S, Ren P, Meng X, Zhao J, Chen Q*, and Li C*. (2021). Coordinated cytokinin signaling and auxin biosynthesis mediates arsenate-induced root growth inhibition. Plant Physiol. 185: 1166–1181.
Liu H, Liu L, Liang D, Zhang M, Jia C, Qi M, Liu Y, Shao Z, Meng F, Hu S, Yin Y*, Li C*, and Wang Q*. (2021). SlBES1 promotes tomato fruit softening through transcriptional inhibition of PMEU1. iScience 24: 102926.
Zheng S, Ren P, Zhai M, Li C*, and Chen Q*. (2021). Identification of genes involved in root growth inhibition under lead stress by transcriptome profiling in Arabidopsis. Plant Mol. Biol. Rep. 39: 50–59.
Guo P, Chong L, Wu F, Hsu C, Li C, Zhu J-K, and Zhu Y*. (2021). Mediator tail module subunits MED16 and MED25 differentially regulate abscisic acid signaling in Arabidopsis. J. Integr. Plant Biol. 63: 802–815.
Zhai Q, Deng L, and Li C*. (2020). Mediator subunit MED25: at the nexus of jasmonate signaling. Curr. Opin. Plant Biol. 57: 78–86.
新聞公眾號(hào):Curr Opin Plant Biol | 李傳友研究組應(yīng)邀撰寫茉莉酸信號(hào)通路轉(zhuǎn)錄調(diào)控機(jī)理的綜述文章,https://mp.weixin.qq.com/s/EoLr2HDCllWA7TtDQ02XeA
Zhai H, Zhang X, You Y, Lin L, Zhou W*, and Li C*. (2020). SEUSS integrates transcriptional and epigenetic control of root stem cell organizer specification. EMBO J. 39: e105047.
獲F1000推薦,https://connect.h1.co/article/738664392
新聞公眾號(hào):中科院遺傳發(fā)育所李傳友研究組揭示轉(zhuǎn)錄調(diào)控因子SEUSS調(diào)控干細(xì)胞命運(yùn)決定的新機(jī)制,https://mp.weixin.qq.com/s/gYfoQGlUNC03udtVNH7RfQ
Wu F, Deng L, Zhai Q, Zhao J, Chen Q, and Li C*. (2020). Mediator subunit MED25 couples alternative splicing of JAZ genes with fine-tuning of jasmonate signaling. Plant Cell 32: 429–448.
新聞公眾號(hào):遺傳所李傳友組揭示可變剪切調(diào)控茉莉酸信號(hào)通路的機(jī)制,https://mp.weixin.qq.com/s/nKNFc8ZE99LVfe-Ii58DQA
Du M*, Zhou K, Liu Y, Deng L, Zhang X, Lin L, Zhou M, Zhao W, Wen C, Xing J, Li C-B*, and Li C*. (2020). A biotechnology-based male-sterility system for hybrid seed production in tomato. Plant J. 102: 1090–1100.
新聞公眾號(hào):李傳友研究組合作研發(fā)新型番茄雄性不育系統(tǒng)用于雜交種子生產(chǎn),https://mp.weixin.qq.com/s/KfW2m5ByBYqiiBwUWiPGzw
You Y, An C, and Li C*. (2020). Insect feeding assays with Spodoptera exigua on Arabidopsis thaliana. Bio-protocol 10: e3538.
Sun C, Deng L, Du M, Zhao J, Chen Q, Huang T, Jiang H, Li C-B*, and Li C*. (2020). A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Mol. Plant 13: 42–58. (Cover story).
Highlighted with a Spotlights article in Molecular Plant, https://doi.org/10.1016/j.molp.2019.12.012
新聞公眾號(hào):中科院遺傳所李傳友研究組在番茄花青素合成的轉(zhuǎn)錄調(diào)控機(jī)理研究中取得重要進(jìn)展,https://mp.weixin.qq.com/s/sty4h0umk23F-K3THH9aMA
Sun W, Han H, Deng L, Sun C, Xu Y, Lin L, Ren P, Zhao J, Zhai Q*, and Li C. (2020). Mediator Subunit MED25 Physically Interacts with PHYTOCHROME INTERACTING FACTOR4 to Regulate Shade-Induced Hypocotyl Elongation in Tomato. Plant Physiol. 184:1549–1562.
Highlighted with a News and Views article in Plant Physiology, https://doi.org/10.1104/pp.20.01324
Shao Z, Zhao Y, Liu L, Chen S, Li C, Meng F, Liu H, Hu S, Wang J, and Wang Q*.(2020). Overexpression of FBR41 enhances resistance to sphinganine analog mycotoxin-induced cell death and alternaria stem canker in tomato. Plant Biotechnol. J. 18: 141–154.
Ren K, Tian X, Li S, Mei E, He M, Tang J, Xu M, Li X, Wang Z, Li C, and Bu Q*. (2020). Oryza sativa mediator subunit OsMED25 interacts with OsBZR1 to regulate brassinosteroid signaling and plant architecture in rice. J. Integr. Plant Biol. 62: 793–811.
Zhu Y, Hu X, Duan Y, Li S, Wang Y, Rehman A, He J, Zhang J, Hua D, Yang L, Chen Z, Li C, Wang B, Song C, Sun Q, Yang S, Gong Z*.(2020). The Arabidopsis nodulin homeobox factor AtNDX interacts with AtRING1A/B and negatively regulates abscisic acid signaling. Plant Cell 32: 703–721.
Guo H, Sun Y, Yan H, Li C, and Ge F*. (2020). O-3-induced priming defense associated with the abscisic acid signaling pathway enhances plant resistance to Bemisia tabaci. Front. Plant Sci. 11: 93.
Yang T, Deng L, Zhao W, Zhang R, Jiang H, Ye Z*, Li C-B*, and Li C*. (2019). Rapid breeding of pink-fruited tomato hybrids using the CRISPR/Cas9 system. J. Genet. Genomics 46: 505–508. (Cover story)
Wang H, Li S, Li Y, Xu Y, Wang Y, Zhang R, Sun W, Chen Q, Wang X, Li C*, and Zhao J*. (2019). MED25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signaling. Nat. Plants5: 616–625.
獲F1000推薦,https://connect.h1.co/article/735971903
新聞公眾號(hào):Nature Plants | 遺傳所李傳友/山東農(nóng)大趙久海合作團(tuán)隊(duì)在植物轉(zhuǎn)錄增強(qiáng)子調(diào)控基因轉(zhuǎn)錄的機(jī)理研究中取得重要進(jìn)展,https://mp.weixin.qq.com/s/_e3yMT_dmXtxVqtXZ-scxQ
Liu Y, Du M, Deng L, Shen J, Fang M, Chen Q, Lu Y, Wang Q*, Li C*, and Zhai Q*. (2019). MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31: 106–127.
Highlighted with an In Brief article in Plant Cell, https://doi.org/10.1105/tpc.19.00004
Highlighted with a Spotlight article in Trends Plant Sci., https://doi.org/10.1016/j.tplants.2019.06.001
獲F1000推薦,https://connect.h1.co/article/734767302
You Y, Zhai Q*, An C, and Li C*. (2019).LEUNIG_HOMOLOG mediates jasmonate-dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25. Plant Cell 31: 2187–2205.
新聞公眾號(hào):李傳友研究組在茉莉酸信號(hào)轉(zhuǎn)錄調(diào)控機(jī)理研究中取得新進(jìn)展,https://mp.weixin.qq.com/s/tEMvfo-ck64eymczhpk7sA
Zhai Q, and Li C*. (2019). The plant Mediator complex and its role in jasmonate signaling.J. Exp. Bot.70: 3415–3424.
Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, Li C, and Scheres B*.(2019). A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177: 942–956.
Zhang P, Wei J, Zhao C, Zhang Y, Li C, Liu S, Dickee M, Yu X, and Turlings TCJ*. (2019). Airborne host–plant manipulation by whiteflies via an inducible blend of plant volatiles. Proc. Natl. Acad. Sci. USA.116: 7387–7396.
Shi X, Preisser E, Liu B, Pan H, Xiang M, Xie W, Wang S, Wu Q, Li C, Liu Y, Zhou X, and Zhang Y*. (2019). Variation in both host defense and prior herbivory can alter plant-vector-virus interactions. BMC Plant Biol. 19: 556.
Wang M, Qiao J, Yu C, Chen H, Sun C, Huang L, Li C, Geisler M, Qian Q, Jiang D, and Qi Y*. (2019). The auxin influx carrier, OsAUX3, regulates rice root development and responses to aluminium stress. Plant Cell Environ. 42: 1125–1138.
Qi L, Zhang X,Zhai H, Liu J, Wu F, Li C*,and Chen Q*. (2019). Elongator is required for root stem cell maintenance by regulating SHORT ROOT transcription. Plant Physiol. 179: 220–232.
Zhang R, Ge S, He J, Li S, Hao Y, Du H, Liu Z, Cheng R, Feng Y-Q, Xiong L, Li C, Hetherington A, and Liang Y-K*. (2019).BIG regulates stomatal immunity and jasmonate production in Arabidopsis.New Phytol.222: 335–348.
Zhang X,Zhou W, Chen Q, Fang M, Zheng S, Ben S, and Li C*.(2018). The Mediator subunit MED31 is required for radial patterning of Arabidopsis roots.Proc. Natl. Acad. Sci. USA. 115: E5624–E5633.
Deng L, Wang H, Sun C, Li Q, Jiang H, Du M, Li C-B, and Li C*. (2018). Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. J. Genet. Genomics 45: 51–54.
Lian J, Han H, Zhao J, and Li C*. (2018).In-vitroand in-planta Botrytis cinereainoculation assays for tomato. Bio-protocol8: e2810.
Guo H, Sun Y, Yan H, Li C, and Ge F*.(2018). O-3-induced leaf senescence in tomato plants is ethylene signaling-dependent and enhances the population abundance of Bemisia tabaci. Front. Plant Sci. 9: 764.
Zhang H, Yu P, Zhao J, Jiang H, Wang H, Zhu Y, Botella M, Samaj J, Li C, and Lin J*.(2018). Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytol. 217: 799–812.
Zhai Q, Li L, An C, and Li C*. (2018). Conserved function of mediator in regulating nuclear hormone receptor activation between plants and animals. Plant Signal. Behav. 13: e1403709.
Lv B, Tian H, Zhang F, Liu J, Lu S, Bai M, Li C, and Ding Z*. (2018). Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet. 14: e1007144.
An C, Li L, Zhai Q*, You Y, Deng L, Wu F, Chen R, Jiang H, Wang H, Chen Q, and Li C*. (2017). Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc. Natl. Acad. Sci. USA. 114: E8930–E8939.
Du M,Zhao J*, Tzeng D,Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li C-B, and Li C*. (2017).MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29: 1883–1906.
Li J, Li C, and Smith S.M.(Eds.). (2017). Hormone Metabolism and Signaling in Plants. Woodhead Publishing, Elsevier. (Book)
Zhai Q, Yan C, Li L, Xie D, and Li C*. (2017). Jasmonates. In Hormone Metabolism and Signaling in Plants. 1st ed. Li J, Li C and Smith M.S. ed (London, United Kingdom: ELSEVIER Academic Press), pp. 243–263. (Book chapter)
Smith M, Li C, and Li J. (2017). Hormone function in plants. In Hormone Metabolism and Signaling in Plants. 1st ed. Li J, Li C and Smith M.S. ed (London, United Kingdom: ELSEVIER Academic Press), pp. 1–38. (Book chapter)
Qi J, Wu B, Feng S, Lu S, Guan C, Zhang X, Qiu D, Hu Y, Zhou Y, Li C, Long M, and Jiao Y*. (2017). Mechanical regulation of organ asymmetry in leaves. Nat. Plants 3: 724–733.
Liu B, Preisser E, Shi X, Wu H, Li C, Xie W, Wang S, Wu Q, and Zhang Y*. (2017). Plant defence negates pathogen manipulation of vector behaviour. Funct. Ecol. 31: 1574–1581.
Li C*, Li J*, Harter K, Lee Y, Leung J,Martinoia E, Matsuoka M, Offringa R, Qu L, Schroeder J, andZhao Y. (2016). Toward a molecular understanding of plant hormone actions. Mol. Plant9: 1–3.
Xu Y, Jin W, Li N, Zhang W, Liu C, Li C*, and Li Y*.(2016). UBIQUITIN-SPECIFIC PROTEASE14 interacts with ULTRAVIOLET-B INSENSITIVE4 to regulate endoreduplication and cell and organ growth in Arabidopsis. Plant Cell 28: 1200–1214.
Ito J, Fukaki H, Onoda M, Li L, Li C, Tasaka M, and Furutani M*. (2016). Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proc. Natl. Acad. Sci. USA. 113: 6562–6567.
Ou Y, Lu X, Zi Q, Xun Q, Zhang J, Wu Y, Shi H, Wei Z, Zhao B, Zhang X, He K, Gou X, Li C, and Li J*. (2016). RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res. 26: 686–698.
Cui H, Wei J, Su J, Li C, and Ge F*. (2016). Elevated O-3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid Encarsia formosa for tomato plants. Plant Sci. 253: 243–250.
Wang C, Hu T, Yan X, Meng T, Wang Y, Wang Q, Zhang X, Gu Y, Sanchez-Rodriguez C, Gadeyne A, Lin J, Persson S, Van Damme D, Li C, Bednarek S, and Pan J*. (2016). Differential regulation of clathrin and its adaptor proteins during membrane recruitment for endocytosis. Plant Physiol. 171: 215–229.
Shi W, Chen X, Wang L, Gong Z, Li S, Li C, Xie B, Zhang W, Shi M, Li C, Zhang Y, and Song X*. (2016). Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. J. Exp. Bot. 67: 2191–2205.
Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q*,and Li C*. (2015). Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27: 2814–2828.
獲F1000推薦,https://connect.h1.co/article/725812569
Chen Q, Liu Y, Maere S, Lee E, Van Isterdael G, Xie Z, Xuan W, Lucas J, Vassileva V, Kitakura S, Marhavy P, Wabnik K, Geldner N, Benkova E, Le J, Fukaki H, Grotewold E, Li C, Friml J,Sack F, Beeckman T*, and Vanneste S*. (2015). A coherent transcriptional feed-forward motif controls auxin-sensitive PIN3 expression for lateral root development.Nat. Commun. 6: 8821.
Li C*. (2015). Toward understanding the stem-cell origin and the molecular regulation of rice tillering. J. Genet. Genomics 42: 47–48.
Zhou Z, Wu Y, Yang Y, Du M, Zhang X, Guo Y, Li C, and Zhou J*. (2015). An Arabidopsis plasma membrane proton ATPase modulates JA signaling and is exploited by the Pseudomonas syringae effector protein AvrB for stomatal invasion. Plant Cell 27: 2032–2041.
Wang Z, Mao J, Zhao Y, Li C, and Xiang C*. (2015). L-Cysteine inhibits root elongationthrough auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana. J. Integr. Plant Biol. 57: 186–197.
Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang D, and Qi Y*. (2015). The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryzasativa L.). Plant J. 83: 818–830.
Ren Q, Sun Y, Guo H, Wang C, Li C, and Ge F*. (2015). Elevated ozone induces jasmonic acid defense of tomato plants and reduces midgut proteinase activity in Helicoverpa armigera. Entomol. Exp. Appl. 154: 188–198.
Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Zhuo Huang Z, Wang B, Jiang H, Huang T, Li C-B, Wei J, Kang L, Li J, and Li C*. (2014). Closely-related NAC transcription factors of tomato differentially regulate stomatal closure and re-opening during pathogen attack. Plant Cell26: 3167–3184.
Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T, and Xie D*. (2014). Interaction of MYC2 with EIN3 modulates antagonism between jasmonate and ethylene signaling. Plant Cell 26: 263–279.
Du L, Li N, Chen L, Xu Y, Li Y, Zhang Y, Li C, and Li Y*. (2014). The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis.Plant Cell 26: 665–677.
Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, Qian Q, Chen F, Geisler M, Qi Y, and Jiang D*.(2014). OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa. L). Plant J. 79: 106–117.
Wang S, Xu Y, Li Z, Zhang S, Li C, Qian Q, Jiang D, and Qi Y*.(2014). OsMOGS is required for N-glycan formation and auxin-mediated root development in rice. Plant J.78: 632–645.
Kang J, Yu H, Tian C, Zhou W, Li C, Jiao Y, and Liu D*. (2014). Suppression of photosynthetic gene expression in roots is required for sustained root growth under phosphate deficiency. Plant Physiol. 165: 1156–1170.
Zhang G, Li S, Wang L, Ye W, Zeng D, Rao Y, Peng Y, Hu J, Yang Y, Xu J, Ren D, Gao Z, Zhu L, Dong G, Hu X, Yan M, Guo L, Li C, and Qian Q*.(2014). LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. Mol. Plant7: 1350–1364.
Song Y, Ye M, Li C, He X, Zhu, Wang R, Su Y, Luo S, and Zeng R*.(2014). Hijacking common mycorrhizal networksfor herbivore-induced defence signaltransfer between tomato plants. Sci. Rep. 4: 3915.
Zhao Q, Wu Y, Gao L, Ma J, Li C, and Xiang C*. (2014). Sulfur nutrient availability regulates root elongation by affecting root indole-3-acetic acid levels and the stem cell niche. J. Integr. Plant Biol. 56: 1151–1163.
Zhang J, Liu X, Li S, Cheng Z, and Li C*. (2014). The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS ONE 9: e88068.
Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni J, Chetelat R, Zamir D, Stadler T, Li J, Ye Z, Du Y, and Huang S*. (2014). Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46: 1220–1226.
Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li C-B, and Li C*. (2013). Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet. 9:e1003964.
Yu X, Pasternak T, Eiblmeier M, Ditengou F, Kochersperger P, Sun J, Wang H, Rennenberg H, Teale W, Paponov I, Zhou W, Li C, Li X, and Palme K*. (2013). Plastid-localized glutathione reductase2-regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance. Plant Cell 25: 4451–4468.
Sun J, Qi L, Li, Y, Zhai Q, and Li C*. (2013). PIF4 and PIF5 link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 25: 2102–2114.
Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong M-Q, Wang Y, and Li C*. (2013). Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9: e1003422.
Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng Y, Yuan L, and Li C*. (2013). The rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc. Natl. Acad. Sci. USA. 110: 3167–3172.
Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma B, Liu J, Li C, Bednarek S, and Pan J*. (2013). Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell 25: 499–516.
Wei J, Yan L, Ren Q, Li C, Ge F, and Kang L*.(2013). Antagonism between herbivore-induced plant volatiles and trichomes affects tritrophic interactions. Plant Cell Environ. 36: 315–327.
Song Y, Ye M, Li C, Wang R, Wei X, Luo S, and Zeng R*. (2013). Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J. Chem. Ecol. 39: 1036–1044.
Jia C, Zhang L, Liu L, Wang J, Li C, and Wang Q*. (2013). Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp lycopersici. J. Exp. Bot. 64: 637–650.
Sun J, Qi L, and Li C*. (2012). Hormonal regulation of polar auxin transport. Signaling and Communication in Plants, Springer Verlag volume. (Book chapter)
Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, and Li C*. (2012). The Arabidopsis Mediator subunit MED25 differentially regulates jasmonate and ABA signalings through interacting with MYC2 and ABI5. Plant Cell 24:2898–2916.
The Tomato Genome Consortium.(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature485:635–641. (Cover story)
Ren J, Li C-B, and Li C*. (2012). Tomato genome gets fully decoded--Paves way to tastier and healthier fruits. J. Genet. Genomics39: 303–305.
Sun J, Qi L, Li Y, Chu J, and Li C*. (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet.8:e1002594.
獲F1000推薦,https://connect.h1.co/article/714147854
Qi L, Yan J, Li Y, Jiang H, Sun J, Chen Q, Li H, Chu J, Yan C, Sun X, Yu Y, Li C-B, andLi C*. (2012). Arabidopsis plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen Alternaria brassicicola. New Phytol.195: 872–882.
Liu X, Li F, Tang J, Wang W, Zhang F, Wang G, Chu J, Yan C, Wang T, Chu C, and Li C*. (2012). Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLoS ONE 7: e50089.
Guo H, Kang L, Li C, Ren Q, Sun Y, Wang C, and Ge F*. (2012). Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS ONE 7: e41426.
Liu L, Wei J, Zhang M, Zhang L, Li C, and Wang Q*. (2012). Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. J. Exp. Bot.53: 5751–5761.
Cui H, Sun Y, Su J, Li C, and Ge F*. (2012). Reduction in the fitness of Bemisia tabaci fed on three previously infested tomato genotypes differing in the jasmonic acid pathway. Environ. Entomol. 41: 1443–1453.
Cui H, Sun Y, Su J, Ren Q, Li C, and Ge F*. (2012). Elevated O-3 reduces the fitness of Bemisia tabaci via enhancement of the SA-dependent defense of the tomato plant. Arthropod-Plant Inte. 6: 425–437.
Chen Q, Sun J, Zhai Q, Zhou W, Qi L, Xu L, Wang B, Chen R, Jiang H, Qi J, Li X, Palme K, and Li C*. (2011). The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell23:3335–3352.
獲F1000推薦,https://connect.h1.co/article/13327989
Chen M, Liu H, Kong J, Yang Y, Zhang N, Li R, Yue J, Huang J, Li C, Cheung A, and Tao L*. (2011). RopGEF7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. Plant Cell23:2880–2894.
Sun J, Chen Q, Qi L, Jiang H, Li S, Xu, Y, Liu F, Zhou W, Pan J, Li X, Palme K, and Li C*. (2011). Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytol.191: 360–375.
獲F1000推薦,https://connect.h1.co/article/9822956
Li H, Jiang H, Bu Q, Zhao Q, Sun J, Xie Q, and Li C*. (2011). The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating ABA signaling and drought response. Plant Physiol. 156:550–563.
Sun J, Jiang H, and Li C*.(2011). Systemin/jasmonate-mediated systemic defense signaling in tomato. Mol. Plant 4: 607–615.
Zhang L, Jia C, Liu L, Zhang Z, Li C, and Wang Q*. (2011). The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. J. Exp. Bot. 62: 5405–5418.
Sun Y, Yin J, Cao H, Li C, Kang L, and Ge F*. (2011). Elevated CO2 influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS ONE6: e19751.
Wei J, Wang L, Zhao J, Li C, Ge F, and Kang L*.(2011). Ecological trade-offs between jasmonic acid-dependent direct and indirect plant defences in tritrophic interactions. New Phytol. 189: 557–567.
Zhou W, Wei L, Xu J, Zhai Q, Jiang H, Chen R, Chen Q, Sun J, Chu J, Zhu L, Liu C-M, andLi C*. (2010). Arabidopsis tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating post-embryonic maintenance of root stem cell niche. Plant Cell22: 3692–3709.
Li C*, and Li J. (2010). Toward understanding the molecular mechanisms governing plant hormone actions: A brief introduction to the Major Research Program “Molecular mechanisms of plant hormone actions” funded by the National Natural Science Foundation of China (NSFC). Chinese Sci. Bull.55: 2197.
Liu F, Jiang H, Ye S, Chen W-P, Liang W, Xu Y, Sun B, Sun J, Wang Q, Cohen JD, andLi C*. (2010). The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res.20: 539–552.
Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen J, Palme K, andLi C*. (2009). ArabidopsisASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation.Plant Cell21: 1495–1511.
Mueller LA et al., (2009). A snapshot of the emerging tomato genome sequence. The Plant Genome.2: 78–92.
Jiang H, Li H, Bu Q, andLi C*.(2009). The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response. Plant Signal. Behav.4: 464–466.
Bu Q, Li H, Zhao Q, Jiang H, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Wang D, andLi C*. (2009). The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of ABA signaling during seed germination and early seedling development. Plant Physiol.150: 463–481.
Liang W, Li C-B, Liu F, Jiang H, Li S, Sun J, Wu X, and Li C*. (2009). The Arabidopsis homologs of CCR4-associated factor 1 exhibit mRNA deadenylation activity and play a role in plant defense responses. Cell Res.19: 307–316.
Li C-B, Zhao J, Jiang H, Geng Y, Dai Y, Fan H, Zhang D, Chen J, Lu F, Shi J, Sun S, Chen J, Yan X, Lu C, Chen M, Cheng Z, Ling H, Wang Y, Xue Y, andLi C*. (2008). A snapshot of the Chinese SOL Project. J. Genet. Genomics35: 387–390.
Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, and Li C*. (2008). Mutation of the rice NARROW LEAF1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol.147: 1947–1959.
Bu Q, Jiang H, Li C-B, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, andLi C*.(2008). Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res.18: 756–767.
Li H, Sun J, Xu Y, Jiang H, Wu X, andLi C*. (2007). The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol. Biol.65: 655–665.
Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, andLi C*.(2007). The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol.48: 1148–1158.
Zhai Q, Li C-B, Zheng W, Wu X, Zhao J, Zhou G, Jiang H, Sun J, Lou Y, and Li C*.(2007). Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant Cell Physiol.48: 1061–1071.
Zheng W, Zhai Q, Sun J, Li C-B, Zhang L, Li H, Zhang X, Li S, Xu Y, Jiang H, Wu X, and Li C*. (2006). Bestatin, an inhibitor of aminopeptidases, provides a chemical genetics approach to dissect jasmonate signaling in Arabidopsis. Plant Physiol.141: 1400–1413.
Li C-B, Zhao J, Jiang H, Wu X, Sun J, Zhang C, Wang X, Lou Y, andLi C*.(2006). The wound-response mutant suppressor of prosystemin-mediated responses6 (spr6) is a weak allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1). Plant Cell Physiol. 47: 653–663.
Li C-B, Sun J, Jiang H, Wu X, andLi C*. (2006). Systemic defense signaling in tomato. Chinese Sci. Bull.50: 1817–1822.
Canoles MA, Beaudry RM, Li C, and Howe GA*. (2006). Deficiency of linolenic acid in lefad7 mutant tomato changes the volatile profile and sensory perception of disrupted leaf and fruit tissue. J. Amer. Soc. Hort. Sci.131: 284–289.
Mueller LA*, Tanksley SD, Giovannoni JJ, van Eck J, Stack S, Choi D, Kim BD, Chen M, Cheng Z, Li C, Ling H, Xue Y, Seymour G, Bishop G, Bryan G, Sharma R, Khurana J, Tyagi A, Chattopadhyay D, Singh NK, Stiekema W, Lindhout P, Jesse T, Lankhorst RK, Bouzayen M, Shibata,D, Tabata S, Granell A, Botella MA, Giuliano G, Frusciante L, Causse M, and Zamir D. (2005). The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comp. Funct. Genomics 6: 153–158.
Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, and Howe GA*.(2005). Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell17: 971–986.
Li C, Liu G, Xu C, Lee G, Bauer P, Ganal M, Ling H, and Howe GA*.(2003). The tomato Suppressor of prosystemin-mediatedresponse2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell15: 1646–1661.
Li L#, Li C#, Lee GI, and Howe GA*. (2002). Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. USA. 99: 6416–6421. (#These authors contributed equally to this work)
Li C, Williams MM, Loh Y-T, Lee GI, and Howe GA*. (2002). Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol.130: 494–503.
Li L,Li C, and Howe GA*.(2001). Genetic analysis of wound signaling in tomato: evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiol.127: 1414–1417.
園夢(mèng)藝生微信
掃一掃 加關(guān)注